3.6.9 \(\int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\) [509]

3.6.9.1 Optimal result
3.6.9.2 Mathematica [A] (verified)
3.6.9.3 Rubi [A] (verified)
3.6.9.4 Maple [B] (verified)
3.6.9.5 Fricas [B] (verification not implemented)
3.6.9.6 Sympy [F(-1)]
3.6.9.7 Maxima [B] (verification not implemented)
3.6.9.8 Giac [F]
3.6.9.9 Mupad [F(-1)]

3.6.9.1 Optimal result

Integrand size = 36, antiderivative size = 103 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \sqrt [4]{-1} a^2 (i A+B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (5 i A+3 B) \sqrt {\cot (c+d x)}}{3 d}-\frac {2 A \sqrt {\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d} \]

output
-4*(-1)^(1/4)*a^2*(I*A+B)*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d-2/3*a^2*( 
5*I*A+3*B)*cot(d*x+c)^(1/2)/d-2/3*A*(I*a^2+a^2*cot(d*x+c))*cot(d*x+c)^(1/2 
)/d
 
3.6.9.2 Mathematica [A] (verified)

Time = 3.07 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.76 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {2 a^2 \cot ^{\frac {3}{2}}(c+d x) \left (A+3 (2 i A+B) \tan (c+d x)-6 \sqrt [4]{-1} (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{3 d} \]

input
Integrate[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]) 
,x]
 
output
(-2*a^2*Cot[c + d*x]^(3/2)*(A + 3*((2*I)*A + B)*Tan[c + d*x] - 6*(-1)^(1/4 
)*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]]*Tan[c + d*x]^(3/2)))/(3* 
d)
 
3.6.9.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {3042, 4064, 3042, 4077, 27, 3042, 4075, 3042, 4016, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{5/2} (a+i a \tan (c+d x))^2 (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4064

\(\displaystyle \int \frac {(a \cot (c+d x)+i a)^2 (A \cot (c+d x)+B)}{\sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-a \tan \left (c+d x+\frac {\pi }{2}\right )+i a\right )^2 \left (B-A \tan \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4077

\(\displaystyle -\frac {2}{3} \int \frac {(\cot (c+d x) a+i a) (a (A-3 i B)-a (5 i A+3 B) \cot (c+d x))}{2 \sqrt {\cot (c+d x)}}dx-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{3} \int \frac {(\cot (c+d x) a+i a) (a (A-3 i B)-a (5 i A+3 B) \cot (c+d x))}{\sqrt {\cot (c+d x)}}dx-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {1}{3} \int \frac {\left (i a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right ) \left (a (A-3 i B)+a (5 i A+3 B) \tan \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d}\)

\(\Big \downarrow \) 4075

\(\displaystyle \frac {1}{3} \left (-\int \frac {6 (i A+B) a^2+6 (A-i B) \cot (c+d x) a^2}{\sqrt {\cot (c+d x)}}dx-\frac {2 a^2 (3 B+5 i A) \sqrt {\cot (c+d x)}}{d}\right )-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (-\int \frac {6 a^2 (i A+B)-6 a^2 (A-i B) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a^2 (3 B+5 i A) \sqrt {\cot (c+d x)}}{d}\right )-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d}\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {1}{3} \left (-\frac {72 a^4 (B+i A)^2 \int \frac {1}{6 a^2 (A-i B) \cot (c+d x)-6 a^2 (i A+B)}d\sqrt {\cot (c+d x)}}{d}-\frac {2 a^2 (3 B+5 i A) \sqrt {\cot (c+d x)}}{d}\right )-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{3} \left (-\frac {12 \sqrt [4]{-1} a^2 (B+i A) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (3 B+5 i A) \sqrt {\cot (c+d x)}}{d}\right )-\frac {2 A \sqrt {\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d}\)

input
Int[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]
 
output
((-12*(-1)^(1/4)*a^2*(I*A + B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - 
 (2*a^2*((5*I)*A + 3*B)*Sqrt[Cot[c + d*x]])/d)/3 - (2*A*Sqrt[Cot[c + d*x]] 
*(I*a^2 + a^2*Cot[c + d*x]))/(3*d)
 

3.6.9.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 

rule 4064
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp 
[g^(m + n)   Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d + c 
*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !Integer 
Q[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4075
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B 
*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f* 
x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1]
 

rule 4077
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + 
n))), x] + Simp[1/(d*(m + n))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan 
[e + f*x])^n*Simp[a*A*d*(m + n) + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - 
 a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && 
GtQ[m, 1] &&  !LtQ[n, -1]
 
3.6.9.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 229 vs. \(2 (86 ) = 172\).

Time = 0.70 (sec) , antiderivative size = 230, normalized size of antiderivative = 2.23

method result size
derivativedivides \(-\frac {a^{2} \left (\frac {2 A \cot \left (d x +c \right )^{\frac {3}{2}}}{3}+4 i A \sqrt {\cot \left (d x +c \right )}+2 B \sqrt {\cot \left (d x +c \right )}+\frac {\left (-2 i A -2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(230\)
default \(-\frac {a^{2} \left (\frac {2 A \cot \left (d x +c \right )^{\frac {3}{2}}}{3}+4 i A \sqrt {\cot \left (d x +c \right )}+2 B \sqrt {\cot \left (d x +c \right )}+\frac {\left (-2 i A -2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(230\)

input
int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x,method=_RETUR 
NVERBOSE)
 
output
-a^2/d*(2/3*A*cot(d*x+c)^(3/2)+4*I*A*cot(d*x+c)^(1/2)+2*B*cot(d*x+c)^(1/2) 
+1/4*(-2*I*A-2*B)*2^(1/2)*(ln((1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(1+c 
ot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+ 
2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))+1/4*(-2*A+2*I*B)*2^(1/2)*(ln((1+cot 
(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))) 
+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2) 
)))
 
3.6.9.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 394 vs. \(2 (83) = 166\).

Time = 0.25 (sec) , antiderivative size = 394, normalized size of antiderivative = 3.83 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {3 \, \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - 3 \, \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) + 2 \, {\left ({\left (7 i \, A + 3 \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-5 i \, A - 3 \, B\right )} a^{2}\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

input
integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algori 
thm="fricas")
 
output
-1/3*(3*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d) 
*log(2*((A - I*B)*a^2*e^(2*I*d*x + 2*I*c) + sqrt(-(I*A^2 + 2*A*B - I*B^2)* 
a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^( 
2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^2)) - 3*sqrt(-( 
I*A^2 + 2*A*B - I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(2*((A - I* 
B)*a^2*e^(2*I*d*x + 2*I*c) - sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^4/d^2)*(d*e^( 
2*I*d*x + 2*I*c) - d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c 
) - 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^2)) + 2*((7*I*A + 3*B)*a^2*e^( 
2*I*d*x + 2*I*c) + (-5*I*A - 3*B)*a^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e 
^(2*I*d*x + 2*I*c) - 1)))/(d*e^(2*I*d*x + 2*I*c) - d)
 
3.6.9.6 Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)
 
output
Timed out
 
3.6.9.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 180 vs. \(2 (83) = 166\).

Time = 0.30 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.75 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {3 \, {\left (2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{2} - \frac {12 \, {\left (-2 i \, A - B\right )} a^{2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {4 \, A a^{2}}{\tan \left (d x + c\right )^{\frac {3}{2}}}}{6 \, d} \]

input
integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algori 
thm="maxima")
 
output
-1/6*(3*(2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 
2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(-1/2*sq 
rt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((I - 1)*A + (I + 1)*B)* 
log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*((I - 1)*A 
+ (I + 1)*B)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))*a^2 - 
12*(-2*I*A - B)*a^2/sqrt(tan(d*x + c)) + 4*A*a^2/tan(d*x + c)^(3/2))/d
 
3.6.9.8 Giac [F]

\[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algori 
thm="giac")
 
output
integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^2*cot(d*x + c)^(5/2) 
, x)
 
3.6.9.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2 \,d x \]

input
int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2,x)
 
output
int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2, x)